Singularities

Poles of Order 1 (Simple Poles)

Function 1/(1–z)

The function \dfrac{1}{1-z} \; (z\in\mathbb{C}) has one simple pole of order 1 at z=1 .
Its finite value at its simple pole z=1 is:

\dfrac{1}{1-1} = -\dfrac{1}{2}

Function 1/(1–z²)

The function \dfrac{1}{1-z^2} \; (z\in\mathbb{C}) has one simple pole of order 1 at z=1 .
Its finite value at its simple pole z=1 is:

\dfrac{1}{1-1^2} = 0

Function 1/(1–zr)

The function \dfrac{1}{1-z^r} \; (z\in\mathbb{C} \text{ and } r\in\mathbb{N}) has one simple pole of order 1 at z=1 .
Its finite value at its simple pole z=1 is:

\dfrac{1}{1-1^r} = \dfrac{r-2}{2r}

Gamma function Γ(z)

The Gamma function \Gamma(z) \; (z\in\mathbb{C}) has a simple pole at every non-positive integer. Its finite values at its simple poles are:

\Gamma(1-n) = (-1)^{n-1} \, \dfrac{\gamma}{\Gamma(n)} = (-1)^{n-1} \, \dfrac{\gamma}{(n-1)!} \qquad (n\in\mathbb{N})

In particular, \Gamma(0) = \gamma .

Inverse sine function π/sin(πz)

The normalised inverse sine function \dfrac{\pi}{\sin(\pi z)} \; (z\in\mathbb{C}) has a simple pole at every integer. Its finite values at its simple poles are:

\dfrac{\pi}{\sin(\pi n)} = (-1)^{n-1} \, \gamma \qquad (n\in\mathbb{N})

\dfrac{\pi}{\sin(-\pi n)} = (-1)^n \, \gamma \qquad (n\in\mathbb{N^*})

In particular, \dfrac{\pi}{\sin 0} = \Gamma(0).\Gamma(1) = \gamma .