Monotonic Exponential Generating Functions

SECTIONS

Eulerian Numbers

\displaystyle \dfrac{t\!-\!1}{t-e^{(t-1)x}} = \sum_{n \geq 0} A_n(t)\,\dfrac{x^n}{n!} \\ = 1 + A_1(t)\,x + A_2(t)\,\dfrac{x^2}{2!} + A_3(t)\,\dfrac{x^3}{3!} + A_4(t)\,\dfrac{x^4}{4!} + \cdots