Monotonic Divergent Series of Real Numbers

List of sums of divergent series of real numbers (where not all terms are rational numbers).

\Gamma(\,) denotes the Gamma function.
\zeta(z) denotes the Riemann zeta function.
\zeta'(z) denotes the derivative of the Riemann zeta function.
\zeta''(z) denotes the second derivative of the Riemann zeta function.
\zeta^{(m)}(z) denotes the m-th derivative of the Riemann zeta function.
\beta(\,) denotes the Dirichlet beta function.
\psi_0(\,) denotes the digamma function.
\psi_1(\,) denotes the trigamma function.

e \approx 2.718281828459045235360287471352662497757247093699959574\ldots denotes the Euler constant.
\gamma \equiv \zeta(1) \approx 0.5772156649015328606065120900824024310\ldots denotes the Euler-Mascheroni constant.
A \approx 1.2824271291006226368753425688697917277676889\ldots denotes the Glaisher-Kinkelin constant.
C \approx 0.915965594177219015054603514932384110774149374281672\ldots denotes the Catalan constant.

A_n \; (n \geq 0) denotes the Glaisher-Kinkelin constants (with A_0 = \sqrt{2\pi} \; and A_1 = A ).
H_n denotes the n-th harmonic number.
H_{n,r} denotes the n-th generalized harmonic number of order r.
H_n^{(r)} denotes the n-th hyperharmonic number of order r.
\gamma_n \; (n \geq 0) denotes the Stieltjes constants (with \gamma_0 = \gamma ).