Aperiodic Monotonic Divergent Series of Rational Numbers

List of sums of aperiodic monotonic divergent series of rational numbers (where not all terms are integers).

\Gamma(\,) denotes the Gamma function
\zeta(\,) denotes the Riemann zeta function
\psi^{(0)}(\,) denotes the digamma function

H_n denotes the n-th harmonic number
H_{n,r} denotes the n-th generalized harmonic number of order r
H_n^{(r)} denotes the n-th hyperharmonic number of order r

e \approx 2.718281828459045235360287471352662497757247093699959574\ldots denotes the Euler constant;
\gamma \equiv \zeta(1) \approx 0.5772156649015328606065120900824024310\ldots denotes the Euler-Mascheroni constant;
A \approx 1.2824271291006226368753425688697917277676889\ldots denotes the Glaisher-Kinkelin constant;
C \approx 0.9159655941772190150546035149323841107741493742816721\ldots denotes the Catalan constant.

GENERA

\displaystyle \sum_{n\geq0} \dfrac{1}{(n+a)^r} = \dfrac{(-1)^r}{(r-1)!} \, \psi^{(r-1)}(a) = \zeta(r) - H_{a-1}^{(r)}  \qquad (a\in\mathbb{N^*})   (semi-stable)

\displaystyle \sum_{n\geq1} \dfrac{1}{(n+a)^r} = \dfrac{(-1)^r}{(r-1)!} \, \psi^{(r-1)}(a+1) = \zeta(r) - H_{a}^{(r)}  \qquad (a\in\mathbb{N^*})   (semi-stable)