Periodic Monotonic Divergent Series of Integers

SPECIES

Periodic monotonic series of 0

\displaystyle \sum_{n\geq m} 0 = 0+0+0+0+0+0+\cdots = 0 \qquad (m \in \mathbb{Z})   (convergent)

Periodic monotonic divergent series of 1

\displaystyle \sum_{n\geq m} 1 = 1+1+1+1+1+1+\cdots = -\dfrac{1}{2} \qquad (m \in \mathbb{Z})   (unstable)

Periodic monotonic divergent series [1+2]

\displaystyle \sum_{n\geq1} \dfrac{3+(-1)^n}{2} = 1+2+1+2+1+2+\cdots = -1   (unstable)

Periodic monotonic divergent series [2+1]

\displaystyle \sum_{n\geq1} \dfrac{3-(-1)^n}{2} = 2+1+2+1+2+1+\cdots = -\dfrac{1}{2}   (unstable)

Periodic monotonic divergent series [1+2+3]

\displaystyle \sum_{n\geq1} \left(n+3\left(1-\bigg\lfloor\dfrac{n+2}{3}\bigg\rfloor\right)\right) = 1+2+3+1+2+3+\cdots = -\dfrac{5}{3}   (unstable)