Divergent Integrals

SUBSECTIONS

Exponential Integrals

\displaystyle \int_1^{\infty_+} a^t \, dt = \dfrac{1-a}{\ln a} \qquad (a>1)

\displaystyle \int_1^{\infty_+} e^{at} \, dt = \dfrac{1-e^a}{a}

\displaystyle \int_1^{\infty_+} e^{iat} \, dt = i \, \dfrac{e^{ia}-1}{a} = -\dfrac{\sin a}{a} \,+\, i \, \dfrac{\cos a - 1}{a}

Trigonometric Integrals

\displaystyle \int_1^{\infty_+} \sin(at) \, dt = \dfrac{\cos a - 1}{a}

\displaystyle \int_1^{\infty_+} \cos(at) \, dt = -\dfrac{\sin a}{a}