Divergent Integrals

List of divergent integrals.

\Gamma(z) denotes the Gamma function.
\Gamma'(z) denotes the derivative of the Gamma function.
K(z) denotes the K-function.
K'(z) denotes the derivative of the K-function.
\psi^{(0)}(z) denotes the Digamma function.
\psi^{(1)}(z) denotes the Trigamma function.
\zeta(z) denotes the Riemann zeta function.
\zeta'(z) denotes the derivative of the Riemann zeta function.
\xi(z) denotes the Riemann xi function.
\xi'(z) denotes the derivative of the Riemann xi function.
\eta(z) denotes the Dirichlet eta function.
\eta'(z) denotes the derivative of the Dirichlet eta function.
P(z) denotes the prime zeta function.
P'(z) denotes the derivative of the prime zeta function.
\theta_3(z,q) denotes the Jacobi theta_3 function.

H_n denotes the n-th harmonic number (with H_0 = 0 ).
H_n' denotes the n-th alternating harmonic number (with H_0' = 0 ).
\displaystyle H_{n,r} = \sum_{m=1}^{n} \dfrac{1}{m^r} denotes the n-th generalized harmonic number of order r (with H_{0,r} = 0 ).
\displaystyle H_n^{(r)} = \sum_{m=1}^{n} H_m^{(r-1)} denotes the n-th hyperharmonic number of order r (with H_n^{(1)} = H_n ).

\gamma = \zeta(1) \approx 0.577215664901532860606512090082402431\ldots denotes the Euler-Mascheroni constant.