Alternating Exponential Generating Functions

List of exponential generating functions (egf) often used in the resolution of divergent series.

x \in \mathbb{C} denotes the rational, real or complex variable.
a \in \mathbb{C} denotes a rational, real or complex constant.

j \in \mathbb{N} denotes the number of (equitable) spacing between all the terms of the series.
k \in \mathbb{N} denotes the number of shifts (leading zeros in front) of the series.

A_n(k) denotes the Eulerian number A(n,k) .
B_n denotes the n-th Bernoulli number.
B_n^{+} denotes the n-th Bernoulli number in the context of B_1^{+} = \frac{1}{2} .
B_n^{-} denotes the n-th Bernoulli number in the context of B_1^{-} = -\frac{1}{2} .
E_n denotes the n-th Euler number.

\zeta(x) denotes the Riemann zeta function.
\zeta(x,a) denotes the Hurwitz zeta function.
\eta(x) denotes the Dirichlet eta function.
\Gamma(x) denotes the Gamma function.
\psi^{(0)}(x) \,=\, \frac{d}{dx} \ln\Gamma(x) denotes the digamma function.
\psi^{(1)}(x) \,=\, \frac{d}{dx}\psi^{(0)}(x) \,=\, \frac{d^2}{dx^2} \ln\Gamma(x) \,=\, \zeta(2,x) denotes the trigamma function.

\gamma = \zeta(1) \approx 0.577215664901532860606512090082402431\ldots denotes the Euler-Mascheroni constant.